1.0 Problem Statement

Secondary Maximum Contaminant Levels (SMCL) are secondary drinking water standards. The California Health and Safety Code defines secondary drinking water standards as:

"...standards that specify maximum contaminant levels that, in the judgment of the department, are necessary to protect the public welfare. Secondary drinking water standards may apply to any contaminant in drinking water that may adversely affect the odor or appearance of the water and may cause a substantial number of persons served by the public water system to discontinue its use, or that may otherwise adversely affect the public welfare. Regulations establishing secondary drinking water standards may vary according to geographic and other circumstances and may apply to any contaminant in drinking water that adversely affects the taste, odor, or appearance of the water when the standards are necessary to ensure a supply of pure, wholesome, and potable water." ¹

SMCLs established by Title 22 of the California Code of Regulations (22 CCR) ² (the drinking water regulations) are incorporated by reference in the Chemical Constituent sections in the Water Quality Objectives Chapter of the Water Quality Control Plan for the Sacramento and San Joaquin River Basins (SRSJR Basin Plan) and the Water Quality Control Plan for the Tulare Lake Basin (TLB Basin Plan) (collectively referred to hereafter as “Central Valley Basin Plans” or “Basin Plans”). The only portions of 22 CCR related to SMCLs and incorporated into the Basin Plans are Tables 64449-A and 64449-B. Table 64449-B includes "Recommended", "Upper", and “Short Term” concentrations for Total Dissolved Solids (TDS) or Specific Conductance (or Electrical Conductivity [EC]), chloride and sulfate. While the SMCLs were included in the Basin Plans for the purpose of protecting drinking water use, neither the text providing context for the tables nor guidance for utilizing the applicable "Recommended", "Upper", or "Short Term" concentrations were explicitly included when the 22 CCR tables were adopted as water quality objectives. This unintentional omission has led to some confusion and inconsistencies when using SMCLs, which were originally intended to protect drinking water quality at the tap, as the basis for deriving appropriate waste discharge requirements.

Primary MCLs that are set at levels to protect public health; SMCLs are drinking water standards are "set to protect the odor, taste, and appearance of drinking water". ³ The secondary drinking water standards are enforceable. In California, compliance with SMCLs in drinking water, as it is based on water served to consumers. ²

¹ California Health and Safety Code, Division 104 Environmental Health, Part 12 Drinking Water, Chapter 4 California Safe Drinking Water Act, Article 1, Section 116275(d)
² California Code of Regulations Title 22 – Social Security; Division 4 – Environmental Health; Chapter 15 – Domestic Water Quality and Monitoring Regulations, Article 16 Secondary Drinking Water Standards.
³ 22 CCR §64481(b)(2)
The purpose of this recommended SNMP Policy is to clarify in the Basin Plans how SMCLs are to be interpreted and used as water quality objectives in Central Valley Regional Water Quality Control Board (Central Valley Water Board) actions that implement the water quality objectives, such as when the Board is developing Waste Discharge Requirements (WDRs) or Conditional Waivers ("Waivers") that authorize discharges to surface water or groundwater. In general, there are two types of SMCLs addressed in this recommended policy: Those associated with salinity (e.g., TDS or EC) in Table 64449-B, and those associated with other types of constituents (e.g., organics, metals, and general characteristics) in Table 64449-A. The salinity based SMCLs are expressed in ranges and the proposed policy describes how the values in the various ranges in Table 64449-B should be applied to waters of the state when used as water quality objectives. The proposed policy also describes how to evaluate compliance with the metal parameters identified in Table 64449-A when these SMCLs are being applied in WDRs.

1.1 Existing Regulatory Requirements

Chemical Constituents Water Quality Objective

The Central Valley Basin Plans state the following with regards to chemical constituents and the protection of surface and ground waters designated with a Municipal and Domestic Supply (MUN) beneficial use:

> At a minimum, water designated...MUN shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations, which are incorporated by reference into this plan: Tables 64431-A (Inorganic Chemicals) and 64431-B (Fluoride) of Section 64431, Table 64444-A (Organic Chemicals) of Section 64444, and Tables 64449-A (Secondary Maximum Contaminant Levels-Consumer Acceptance Limits) and 64449-B (Secondary Maximum Contaminant Levels-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect...The Regional Water Board

4 There are some exceptions, such as Hetch-Hetchy reservoir, which are exempt from EPA’s Long-term2 Enhanced Surface Water Treatment Rule.
5 Water Code, §13263; this includes National Pollutant Discharge Elimination System (NPDES) permits
6 Water Code, §13269.

Commented [EC2]: These comments provided also on 7/22/16 provide technically correct information for drinking water that we recommend be utilized.

Commented [EC3]: Similar comment as provided on 7/22/16. Language regarding filtration recommended for deletion. This is important for clarity, as not all of the SMCL constituents have filtration as an approved best available technology or treatment technique, and filtration would not remove contaminants that are dissolved.

Commented [EC4]: The SRSWPP continues to be concerned about the plan to use 0.45 micron filtered water results for various SMCL constituents. We have provided supporting information on this issue in emails dated 7/22/16 and 10/3/16. It is incorrect to state that because most water systems include filtration in their treatment processes that there is no risk of increased levels and related issues from the SMCL constituents proposed to be changed to dissolved using the 0.45 micron filtered water results, which are applicable to aquatic life but not applicable to conventional water treatment filtration. Moreover, as previously noted, DDW confirmed in comments provided on 8/1/16 that filtered metals results are not used for drinking water compliance monitoring. We request that the issue of fate and transport of metals be further reviewed to ensure that the policy provides appropriate long-term protection of source water quality.

Commented [EC5]: FYI there may be more recent information available on SFPUC’s water system.

acknowledges that specific treatment requirements are imposed by state and federal drinking water regulations on the consumption of surface waters under specific circumstances. To protect all beneficial uses the Regional Water Board may apply limits more stringent than MCLs.

The above referenced SMCL tables, Tables 64449-A and 64449-B from 22 CCR are provided below. Table 64449-A and 64449-B from 22 CCR are provided below. These tables list the chemical constituents along with their respective maximum contaminant levels for Table 64449-A or “Recommended”, “Upper”, and “Short Term” level ranges for Table 64449-B.

Table 64449-A - Secondary Maximum Contaminant Levels; “Consumer Acceptance Contaminant Levels”

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Maximum Contaminant Levels/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.2 mg/L</td>
</tr>
<tr>
<td>Color</td>
<td>15 Units</td>
</tr>
<tr>
<td>Copper</td>
<td>1.0 mg/L</td>
</tr>
<tr>
<td>Foaming Agents (MBAS)</td>
<td>0.5 mg/L</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 mg/L</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Methyl-tert-butyl ether (MTBE)</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Odor – Threshold</td>
<td>3 Units</td>
</tr>
<tr>
<td>Silver</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Thiobencarb</td>
<td>0.001 mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 Units</td>
</tr>
<tr>
<td>Zinc</td>
<td>5.0 mg/L</td>
</tr>
</tbody>
</table>

Table 64449-B - Secondary Maximum Contaminant Levels; “Consumer Acceptance Contaminant Level Ranges”

<table>
<thead>
<tr>
<th>Constituents, Units</th>
<th>Recommended</th>
<th>Upper</th>
<th>Short Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids (TDS), mg/L, or Specific Conductance, µS/cm<sup>8</sup></td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>250</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Sulfate, mg/L</td>
<td>250</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>

While the 22 CCR §64449 tables are referenced in the Central Valley Basin Plans, all of the associated text, which provides context for implementing the tabular values, is not currently included or referenced in the Basin Plans. Attachment A to this policy provides the full text of §64449. Additionally, for surface waters, text in the Basin Plans as provided above references the applicability

⁸ The last sentence regarding consumption of surface waters is found only in the Chemical Constituent water quality objectives section for inland waters.

⁹ For the purposes of this policy, Specific Conductance is expressed as Electrical Conductivity.
of state and federal drinking water regulations to water served for human consumption, but provides no guidance on its implementation. The Health and Safety Code, Division 104 Environmental Health, Part 12 Drinking Water, Chapter 4 California Safe Drinking Water Act, Article 1, Section 116275, includes the definition and importance of SMCLs and is also not included or referenced in the Basin Plans, nor is the General State Policy on Right to Safe, Clean, Affordable, and Accessible Water.

Related Water Quality Objectives
In addition to the TDS and EC values included in Table 64449-B, additional potentially relevant water body-specific salinity-related water quality objectives include:

- SRSJR Basin Plan establishes water body-specific objectives for EC and TDS in Table III-3. Per the SRSJR Basin Plan, where any conflict exists between the Table III-3 objectives and chemical constituents water quality objectives, as referenced in 22 CCR Table 64449-B, the more stringent objectives shall apply.11

- TLB Basin Plan establishes water body-specific objectives for EC in Tables III-2 and III-3. All of these water body-specific objectives are lower than the SMCLs referenced in Table 64449-B.13

- The Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary contains water quality objectives for chloride and EC to protect the MUN and agricultural beneficial uses in the Delta.14

The proposed recommendations in this policy would not affect the applicability of the above water body-specific objectives, and the SNMP does not propose to make any recommendations otherwise that would affect the water body-specific objectives for TDS or EC as established in the Basin Plans.

Other Relevant Regulatory Requirements
Natural Background Concentrations
Consideration of the natural background concentration of a constituent relative to a water quality objective is addressed in each Basin Plan as follows:

- The TLB Basin Plan states that, "The objectives of this plan do not require improvement over naturally occurring background concentrations."15 This finding applies to both inland surface water and groundwater quality objectives.16

- The SRSJR Basin Plan states that, "These objectives do not require improvement over naturally occurring background concentrations."17

10 Values for SMCLs for salinity may be expressed as TDS or EC.
11 SRSJR Basin Plan. See p. III-6.02 and Table III-3 on p. III-7.00.
13 Table III-3 in the SRSJR Basin Plan and Tables III-2 and III-3 in the TLB Basin Plan include explanatory text or table notes that provide additional information regarding application of water body-specific objectives. These notations are critical for making a determination of compliance with a water body-specific objective.
16 This Basin Plan language is superseded by the State Implementation Plan, which specifies how to derive effluent limitations.
for NPDES dischargers for priority pollutants in surface waters. Also, for surface waters the EPA only allows consideration of natural background for aquatic life constituents and not human health constituents.

Both the SRSJR and TLB Basin Plans include the following text within Chapter 4 of the Basin Plans (Policy for Application of Water Quality Objectives): However, the water quality objectives do not require improvement over naturally occurring background concentrations. In cases where the natural background concentration of a particular constituent exceeds an applicable water quality objective, the natural background concentration will be considered to comply with the objective.18

Per the above Basin Plan statements, natural background should be considered when establishing WDRs. Consideration of natural background concentrations of TDS or EC is important in many areas of the Central Valley. The TLB Basin Plan also includes specific salinity implementation provisions in Chapter 4 governing consumptive use and controlled degradation. In particular:

- Discharges to Navigable Waters “...shall not exceed the quality of the source water plus 500 micromhos per centimeter or 1,000 micromhos per centimeter, whichever is more stringent...”19

- For Discharges to Land “...maximum EC shall not exceed the EC of the source water plus 500 micromhos/cm.”20

- Water quality objectives for groundwater salinity are based on a maximum average annual increase measured as electrical conductivity, recognizing that, “no proven means exist at present that will allow ongoing human activity in the Basin and maintain ground water salinity at current levels in the Basin.”21

State Water Quality Control Board Policies

Statement of Policy with Respect to Maintaining High Quality of Waters in California (State Antidegradation Policy, Resolution 68-16)

The State Water Resources Control Board’s (State Water Board) Antidegradation Policy applies to both surface waters and groundwaters.22 This policy generally prohibits the Central Valley Water Board from authorizing discharges that will degrade “high quality waters,” unless the Central Valley Water Board first finds that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial use of such water and will not result in water quality less than that prescribed in the policies. The discharge will be required to meet waste discharge requirements which result in the best practicable treatment or control of the discharge necessary to assure that a pollution or nuisance will not occur and (1) the highest water quality consistent with the maximum benefit to people of the state will be maintained. High quality waters are those waters that are generally better than applicable water quality objectives. A determination of high quality is made on a constituent-by-constituent basis.

*Sources of Drinking Water Policy (Resolution 88-63)*23

18 SRSJR Basin Plan, p. IV-17.00; TLB Basin Plan, p. IV-21.

19 TLB Basin Plan, p. IV-10. (describing “effluent limits” for point source discharges from wastewater treatment facilities)

20 TLB Basin Plan, p. IV-11. (describing “effluent limits: for point source discharges from wastewater treatment facilities)

21 TLB Basin Plan, p. IV-20.

23 State Water Board Resolution No. 88-63. Sources of Drinking Water Policy, May 19, 1988, as revised by Resolution No. 2006-0008.
The Sources of Drinking Water Policy established a policy whereby all waters are considered suitable or potentially suitable to support the MUN beneficial use, with certain exceptions. The Central Valley Basin Plans implement this policy by generally assigning an existing or potential MUN beneficial use to all surface waters and groundwaters in the Central Valley unless those waters have already been identified as not supporting the MUN use in the Basin Plans. Under existing regulations, exceptions to the MUN beneficial use can only be made in the Basin Plans themselves based on criteria in the policy. One of the exception criteria is that TDS exceeds 3,000 mg/L (5,000 µS/cm, EC) in the water body and it is not reasonably expected by a Regional Board that the water body would be used as a supply for a community public water system. These TDS or EC exception criteria are much higher than the range of acceptable SMCLs for TDS or EC in Table 64449-B (“Short Term” acceptable contaminant level of 1,500 mg/L TDS or 2,200 µS/cm EC), and would be unacceptable for drinking water without treatment.

Human Right to Water as a Core Value and Directing Its Implementation in Water Board Programs and Activities (Resolution 2016-0010).

In 2012, the state legislature approved Assembly Bill 685 which amended the California Water Code to declare that:

> “...every human being has the right to safe, clean, affordable and accessible water adequate for human consumption, cooking and sanitary purposes. All relevant state agencies, including the Department of Water Resources, the State Water Resources Control Board, and the State Department of Public Health, shall consider this state policy when revising, adopting or establishing policies, regulations, and grant criteria when these policies, regulations and criteria are pertinent to the uses of water described in this section.”

To ensure statewide implementation and consideration of the Human Right to Water, the State Water Board in February of 2016 adopted Resolution 2016-0010.

The Central Valley Water Board recently followed suit and adopted Resolution 2016-0018, similarly directing implementation of the Human Right to Water in its programs and activities.

1.2 Challenges with Application of Existing Basin Plan Language

Total Dissolved Solids or Electrical Conductivity

In the mid-1990s, the Central Valley Water Board modified its Chemical Constituents objective language in the Basin Plan, which incorporates water quality objectives for salinity, either as TDS or EC (Specific Conductance in Table 64449-B), to protect the MUN beneficial use. As described above, this new objective was established by reference to the full range of SMCL drinking water standards identified in 22 CCR Table 64449-B. None of the other associated text from §64449, i.e., §64449(d) or (e), explaining how the SMCLs were supposed to be implemented, was incorporated with the range of values shown in the tables. For example, 22 CCR Table 64449-B indicates three “Consumer Acceptance

24 Exceptions are described on pg. II-3.0 of the SRSJR Basin Plan and pg. II-3 of the TLBP.
25 The Central Valley Regional Board amended the Tulare Lake Basin Plan to include most of the substantive provisions of the statewide Sources of Drinking Water Policy as Res. No. 98-098 in May of 1989.
27 Central Valley Water Board Resolution, adopted April 21, 2016
Contaminant Level Ranges”. For TDS, the “Recommended” value is 500 mg/L, but per the associated text found in 22 CCR §64449(d)(2), concentrations ranging up to an “Upper” value of 1,000 mg/L are also “acceptable,” if it is neither reasonable nor feasible to provide more suitable waters.\(^{28}\) However, this unintentional omission was considered a non-substantive drafting error and, from 1994 to 2009, the Regional Board authorized WDRs using the entire range of acceptable TDS concentrations in a manner consistent with the full text of §64449.

In September 2007, the Central Valley Water Board issued a WDR and a Master Reclamation Permit to the City of Lodi.\(^{29}\) Subsequently, in October 2007, the California Sportfishing Protection Alliance (CALSPA) filed a petition with the State Water Board seeking review of the aforementioned permit.

In June 2009, the Central Valley Water Board submitted written comments to the State Water Board opposing CALSPA’s claim that only the “Recommended” values at the lower end of the range of SMCLs for drinking water\(^{30}\) can be used as water quality objectives when developing WDRs or effluent limits. The Central Valley Water Board noted that such an approach would be more stringent than, and inconsistent with, the manner in which the California Department of Health Services (now the Division of Drinking Water [DDW]) implements these same standards for treated drinking water systems. The Central Valley Water Board also stated that there should be some exception made when the natural background concentration of one or more constituents in the receiving water exceeds the SMCL.

In July 2009, the State Water Board adopted Order WQ 2009-0005,\(^{31}\) which remanded in part the Lodi permit, and directed the Central Valley Water Board to consider further if releases of wastewater from the unlined storage ponds have caused groundwater to exceed applicable Basin Plan objectives for nitrate\(^{32}\) and electrical conductivity.\(^{33}\) In the adopted order, the State Water Board noted that the Chemical Constituents narrative water quality objective in the SRSJR Basin Plan\(^{34}\) incorporates only the SMCL numeric values and does not specifically reference the monitoring, reporting, waiver or other provisions that provide context for application of the values in those tables (e.g., see Attachment A to this policy, in particular the provisions contained in §64449(d) and (e)). It should be noted that the State Water Board was not opposed to using the entire range of SMCL values. But, in order to do so, the State Board determined that the Basin Plan must provide more explicit authority to the Regional Board and describe how the range of values should be applied.

The State Water Board also found that the “Short Term” value of 2,200 µS/cm EC (1,500 mg/L TDS) is not appropriate (as an applicable water quality objective) because it is “intended to apply only on a temporary basis pending construction of water treatment facilities or the development of new water sources”.\(^{35}\)

28 22 CCR §64449(d)(2).
29 Central Valley Water Board Order No. RS-2007-0113; NPDES No. CA0079243.
30 See “Recommended” column in Table 64449-B from 22 CCR.
31 Order WQ 2009-0005 was later amended by Order WQ 2012-0001. The amendments adopted to Order WQ 2009-0005 were unrelated to the salinity provisions discussed herein. However, to ensure proper citations to the relevant order, we have provided citations to Order WQ 2009-0005, as amended by Order WQ 2012-0001.
32 Note that nitrate has a primary maximum contaminant level (22 CCR §64431, Table 64431-A) and is not affected by this policy.
33 State Water Board Order WQ 2012-0001, p. 23.
34 SRSJR Basin Plan, See Pg. III-3.00 for inland surface waters and Pg. III-10.00 for groundwater.
35 State Water Board Order WQ 2012-0001, p. 15.
While the focus of the State Water Board decision was on the SRSJR Basin Plan, the TLB Basin Plan also provides limited additional context for application of the relevant 22 CCR §64449 tables. Consequently, neither of the Central Valley Basin Plans provides much guidance or policy on implementation when the Central Valley Water Board is developing WDRs to implement these particular objectives. Without this information, implementation of the water quality objectives for chemical constituents in Table 64449-B as related to SMCLs creates significant challenges for the following reasons:

- In the State Water Board’s Rancho Caballero decision, the State Water Board declared that when receiving water quality already exceeds a particular water quality objective, and there is no assimilative capacity available, discharge limits must be set to a concentration at or below the objective contained in the Water Quality Control Plan. Therefore, restricting the TDS objective to only the “Recommended” SMCL value in Table 64449-B, severely limits the amount of assimilative capacity available and obligates the Regional Board to impose WDRs that may be more stringent than necessary to protect the MUN use. For example, where TDS (or EC) in the receiving water exceeds 500 mg/L TDS (900 µS/cm EC), the Central Valley Water Board may not allow discharges to those receiving waters to exceed 500 mg/L (or 900 EC) even if the TDS concentration in the discharge is actually less than the TDS concentration in the receiving water and would improve receiving water quality. Restoring the Regional Boards authority to consider the entire acceptable range of salinity concentrations shown in Table 64449-B would provide greater regulatory flexibility to develop WDRs most appropriate for the site-specific conditions.

- The CV-SALTS Initial Conceptual Model project provided a preliminary estimate of the median TDS concentration in the upper (shallower) portion of the 22 Central Valley Initial Analysis Zones (IAZs) based on water quality data recorded for the period 2003 to 2012 (see Section 3.2 of the SNMP). The ICM work was supplemented by an updated groundwater analysis of TDS in IAZs and California Department of Water Resources designated groundwater basins/subbasins in the Central Valley Region. This study summarized TDS water quality for the Upper Zone, Lower Zone and Production Zone of each groundwater basin/subbasin in the valley floor and the basin as a whole for those basins outside the valley floor. See Section 3.3 for a summary of findings, in particular groundwater basins/subbasins that exceed 500 mg/L TDS (900 µS/cm EC) or 1,000 mg/L TDS (1,600 µS/cm EC) thresholds. In general, using 500 mg/L as the threshold, 14 DWR Basins lack assimilative capacity for TDS in the production zone. If 1000 mg/L is used as the threshold, then only 7 DWR Basins lack assimilative capacity for TDS in the Production Zone, respectively.
Attachment A-9 • SMCL Policy

- CV-SALTS completed a water quality analysis of existing surface water quality conditions to support the Antidegradation Analysis completed for the SNMP. Water quality analyses were conducted on available data from California Environmental Data Exchange Network and United States Geological Survey databases. Following is a summary of existing water quality conditions for various SMCL-related constituents (see Section 4.2.2 in Attachment C-2):

 - **Electrical Conductivity** - EC observations are well below the “Recommended” EC level of 900 µS/cm in the Sacramento River and major tributaries; the highest values were observed in the Colusa Drain above Knights Landing where the median is less than 900 µS/cm EC, but individual observations may exceed this value. In the San Joaquin River basin median EC values are at or above the “Recommended” 900 µS/cm EC threshold level at some mainstem river and western tributary locations. At one location, Mud Slough near Gustine, the median value exceeds 2,000 µS/cm EC. At the few available monitoring locations in the Tulare Lake region, median EC values are well below the 900 µS/cm EC threshold at all but one site (Main Drain Canal near Hwy 46) where the median EC value is at the 900 µS/cm EC threshold. Finally, in the Delta Region, median EC values are well below the 900 µS/cm EC threshold.

 - **Other Salinity-Related Constituents** – Median total chloride and total sulfate concentrations are typically well below the “Recommended” threshold level of 250 mg/L, e.g., the highest median value for all hydrologic regions was 32.2 mg/L for chloride in the Tulare Lake region and 6.6 mg/L for sulfate in the Sacramento River region.

 - **Aluminum** – Water quality data for total aluminum were only available from the Sacramento River basin; the median concentration of all data is 130.7 µg/L, below the SMCL of 200 µg/L. Median concentrations for dissolved aluminum range from 9.5 µg/L in the San Joaquin River basin to 12.9 µg/L in the Sacramento River basin.

 - **Manganese** – Median concentrations for total manganese range from 14.2 µg/L (Tulare Lake basin) to 32.5 µg/L (Sacramento River basin). These values are well below the SMCL of 50 µg/L. Median concentrations for dissolved manganese range from 1.7 µg/L in the Tulare Lake basin to 4.3 µg/L in the Sacramento River basin.

 - **Iron** - Median concentrations for total iron range from 145 µg/L (Tulare Lake basin) to 415.5 and 572 µg/L in the San Joaquin and Sacramento River basins, respectively. The values for the San Joaquin and Sacramento River basins are above the SMCL of 300 µg/L. Median concentrations for dissolved iron range from 18.6 µg/L in the Tulare Lake basin to 55.7 µg/L in the Sacramento River basin.

 - **Copper** - Median concentrations for total copper range from 3.4 µg/L (Sacramento River basin) to 5.3 µg/L (Tulare Lake basin). These values are well below the SMCL of 1,000 µg/L. Median concentrations for dissolved copper range from 1.5 µg/L in the Tulare Lake basin to 2.1 µg/L in the Sacramento River basin.

 - **Silver** - Median concentrations for total silver in the Sacramento and San Joaquin River basins are around 0.004 µg/L well below the SMCL of 100 µg/L. Median concentrations for dissolved silver are around 0.001 µg/L in these same basins.

Commented [EC8]: The SRSWPP will be reviewing this material during the public review period.
Zinc - Median concentrations for total zinc range from 4.9 µg/L (Sacramento River basin) to 7.1 µg/L (Tulare Lake basin). These values are well below the SMCL of 5,000 µg/L. Median concentrations for dissolved zinc range from 1.0 µg/L in the San Joaquin River basin to 2.1 µg/L in the Sacramento River basin.

Turbidity – Median concentrations for turbidity range from 3 Nephelometric Turbidity Units (NTU) (Tulare Lake basin) to 5.6 and 13.5 NTU in the Sacramento and San Joaquin River basins, respectively. The observed values for the San Joaquin and Sacramento River basins are above the SMCL of 5 NTU.

Other SMCL-related Constituents – Concentrations of Thiobencarb are well below the SMCL of 1 µg/L in all basins; similarly foaming agents are well below the SMCL of 500 µg/L.

Relying exclusively on the “Recommended” concentration of 500 mg/L TDS (900 µS/cm EC) (Table 64449-B) at the point of compliance for the purpose of establishing WDRs makes it nearly impossible to recharge groundwater basins with recycled water unless there is significant assimilative capacity available in the aquifer because the average TDS concentration in most high quality recycled water is >500 mg/L (900 µS/cm EC). When there is no assimilative capacity available, prior precedential orders by the State Water Board (74-4 & 81-5) require effluent limits no higher than the applicable water quality objective. This complicates and inhibits statewide efforts to promote the use of recycled water for landscape irrigation and to recharge groundwater storage – water management strategies that are particularly important during times of regional or statewide drought.

The current regulatory approach that relies solely on the “Recommended” TDS concentration of 500 mg/L (900 µS/cm EC) (22 CCR Table 64449-B) for the purpose of establishing WDRs also poses significant challenges for agricultural discharges. Assuming a relatively common leaching fraction of 15%, agricultural operators must start with a TDS concentration no greater than 80 mg/L in the irrigation supply water in order to ensure percolation below the root zone does not exceed 500 mg/L (900 µS/cm EC) when it reaches the groundwater table. Similarly, to avoid discharging TDS at concentrations greater than 1,000 mg/L (1,600 µS/cm EC) at the groundwater table, TDS in the irrigation supply water must be less than 165 mg/L.

Similarly, applying the “Recommended” TDS value of 500 mg/L as an annual average a maximum “not-to-exceed” value immediately below the root zone at the groundwater table discourages the use of high efficiency drip irrigation systems with very low leaching fractions. This unintended outcome conflicts with statewide efforts to promote greater water conservation through more efficient irrigation practices.

Finally, it is important to consider that the State Water Board has established a policy that all surface and ground waters of the state should be presumed to support an existing or potential MUN use unless the water body meets one of the exception criteria established in the Sources of Drinking Water Policy. The exception criterion relevant to this policy is criterion 1(a), which states that a basis...
for not designating or removing the MUN use from a surface water or groundwater is the TDS exceeds 3,000 mg/L (or 5,000 µS/cm, EC) and the water body is not reasonably expected by a Regional Board to supply a public water system. These TDS and EC values exceed even the “Short Term” “Consumer Acceptance Contaminant Level Ranges” (1,500 mg/L TDS or 2,200 µS/cm EC) established in Table 64449-B, yet it is State policy that waters with TDS or EC concentrations up to these high values may still be considered suitable to supply public water system and should be protected as such.

Other Regulatory Challenges

In addition to the need to acknowledge the original context for appropriate application of the Table 64449-B values, this recommended policy is also intended to provide clarity to the application of the chemical constituent water quality objectives in the following areas:

- **Measuring Compliance with SMCLs** - Neither 22 CCR nor the Basin Plans provide guidelines with regard to the appropriate sampling method for evaluating WDR compliance with the SMCLs in Tables 64449-A and 64449-B. Historically, wastewater dischargers’ compliance with the SMCLs has been determined by measuring the total recoverable metals in an unfiltered sample. This approach is inconsistent with federal law that requires most community water systems to filter surface water prior to delivery. Moreover, per 22 CCR and federal regulations, SMCLs are intended to apply to water supplied to the public by community water systems, as measured in either the source water or the entry point to the distribution system. Finished water delivered to a community water system. Many of the SMCLs are primarily intended to protect public welfare by addressing aesthetic qualities, such as odor, taste, and appearance, or minimize risk of corrosion in the distribution system that could impact constituents such as lead and copper, which do affect public health, of pipes, fixtures, valves and other plumbing materials; they are not intended to address human health concerns. Continuing to rely on unfiltered samples to assess compliance with SMCLs in the receiving water may overestimate the potential aesthetic impact on the actual quality of downstream drinking water delivered to consumers after treatment. In addition, for groundwater, filtration through natural soils or man-made systems significantly reduces the concentration of total suspended solids, including aesthetically objectionable minerals such as iron, manganese, and aluminum. Filtration does not alter the concentration of dissolved constituents. Evaluating SMCL compliance using an unfiltered groundwater sample collected near the point of discharge fails to take into consideration the natural soil filtration that will occur as water percolates through the vadose zone. Analyzing a filtered sample, collected near the discharge, more accurately characterizes groundwater quality as it will likely appear when it is later extracted for public water supply.

- **Consideration of Natural Background** - Some areas in the Central Valley have natural background TDS or EC concentrations that exceed the “Recommended” or higher values in Table 64449-B. While both the SRSJB and TLB Basin Plans contain provisions for considering natural background concentrations when applying water quality objectives in general, the means for implementing these provisions in WDRs with regards to SMCLs has not always been clear notwithstanding the Water Code’s requirement in §13242 to have implementation plans for all water quality objectives.

45 Federal Register 44, July 19, 1979, page 42199.
46 See Final Draft CV-SALTS White Paper: Salinity Effects on MUN-Related Uses of Water;
• “Specific Treatment Requirements” - Language for Inland Surface Waters - As noted above, the existing Chemical Constituents water quality objective for inland surface waters includes the following statement: “The Regional Water Board acknowledges that specific treatment requirements are imposed by state and federal drinking water regulations on the consumption of surface waters under specific circumstances.” While the Basin Plans acknowledge that specific treatment requirements are imposed by state and federal drinking water regulations, the Basin Plans provide no implementation provisions for this text.

• Compliance Assessment Time Period – Per 22 CCR §64449 (b)(1), drinking water compliance with SMCLs varies depending on the source, with groundwater sources based on a single triennial sample and surface water sources based on a single annual sample is based on a long-term average rather than the results of an individual grab sample taken at the designated point of compliance (see Attachment A, §64449(b) and (c) for additional information on existing monitoring requirements for community water systems). If values exceed the SMCLs for constituents in Table 64449-A, then water systems must initiate quarterly monitoring under 22 CCR §64449 (c)(1), which states that compliance with Table 64449-A constituents shall be determined based on a running annual average of four quarterly samples. 22 CCR §64449 does not provide a qualitative compliance assessment time period for Table 64449-B constituents. The Basins Plans currently do not provide guidelines for an appropriate compliance assessment time period for the SMCLs incorporated by reference from 22 CCR.

2.0 New Regulatory Approach to Implement SMCLs as Chemical Constituents

The proposed changes apply only for the purpose of interpreting and implementing the SMCLs. Some SMCL constituents (e.g. priority pollutants) have separate WQOs intended to protect aquatic life. The SNMP is not proposing to change these other objectives or the manner in which compliance with these objectives is currently assessed.

2.1 Total Dissolved Solids or Electrical Conductivity

The unintentional omission of contextual information inadvertently and unnecessarily constrained the Central Valley Water Board’s discretion to develop appropriate WDRs based on the full range of values enumerated in Table 64449-B. Construing the “Recommended” levels specified in Table 64449-B as “not-to-exceed” values in WDRs and NPDES permit limits is not consistent with the full text of §64449(d), which states:

“(d) For the constituents shown on Table 64449-B, no fixed consumer acceptance contaminant level has been established.

(1) Constituent concentrations lower than the Recommended contaminant level are desirable for a higher degree of consumer acceptance.

(2) Constituent concentrations ranging to the Upper contaminant level are acceptable if it is neither reasonable nor feasible to provide more suitable waters.

(3) Constituent concentrations ranging to the Short Term contaminant level are

Commented [EC14]: We recommend that these edits or similar revisions be made to make this information technically correct, as the current language could lead to misinterpretation of the drinking water compliance monitoring. The suggested edits include some items previously provided on 7/22/16, as well as some language from the previous version of the policy.

Commented [EC15]: This section includes material on both Tables 64449-A and 64449-B. We recommend that the title and intro be revised accordingly, or a new subsection be provided with the material applicable to both tables. Otherwise, it may be difficult for reviewers during the public review process and future users of the document to find materials of interest.
acceptable only for existing community water systems on a temporary basis pending construction of treatment facilities or development of acceptable new water sources.”

Thus, the numeric values were not intended as fixed maximums even for treated drinking water served directly to consumers. Given the importance of the contextual information contained in 22 CCR §64449(d), the Central Valley Water Board should consider the full range of “Consumer Acceptance Contaminant Levels” described in Table 64449-B when establishing reasonable and appropriate WDRs to protect existing or potential water supplies that may be affected by the discharge. This would include use of the “Short Term” level on a temporary basis in those situations where construction of new facilities or connection to new water sources is pending as specified in 22 CCR §64449(d)(3). Accordingly, the Central Valley Region Basin Plans should be amended to incorporate implementation provisions recognizing the contextual information in 22 CCR, Division 4, Chapter 15, Article 16, especially §64449 and §64449.2 (see Attachment A), as appropriate to support this policy. Additional findings that support these potential Basin Plan amendments include:

- 22 CCR §64449(a) specifies that: “The secondary MCLs shown in Tables 64449-A and 64449-B shall not be exceeded in the water supplied to the public by community water systems.” Compliance is evaluated by requiring such systems to monitor their “groundwater sources or distribution system entry points representative of the effluent of source treatment every three years and its approved surface water sources or distribution system entry points representative of the effluent of source treatment annually.” Revising the Basin Plans to incorporate the provisions associated with the implementation of 22 CCR §64449 and §64449.2 will allow the Central Valley Water Board, when developing appropriate WDRs for the SMCLs, to continue taking into consideration any dilution or other attenuation that may occur between the point of discharge and any downstream MUN designated water bodies (surface water) intake to a downstream (surface water) or down-gradient basin (groundwater) water supply system. The Board is not necessarily obligated to authorize the full waste assimilation capacities of the receiving waters. However, the recommended Basin Plan amendments will preserve the Board’s discretion to regulate SMCL constituents based on what is necessary, reasonable, and feasible to protect community water systems just as it was doing prior to the Lodi decision.

- Federal and state regulations do not require adoption of the SMCLs as formal water quality objectives. Several other California Regional Water Quality Control Boards have not adopted SMCLs as water quality objectives in their respective Basin Plans. Instead, these other Boards rely on narrative water quality objectives to regulate mineral concentrations where necessary to protect water supply systems that may be adversely affected by a given discharge. The values shown in 22 CCR Tables 64449-A and 64449-B, along with the associated text in §64449, are used to inform the process of translating narrative objectives into appropriate WDRs.

- The SMCLs are primarily intended to protect public welfare by addressing aesthetic qualities, such as odor, taste, or minimize risk of corrosion in the distribution system of pipes, fixtures, valves and other plumbing.

48 It should be noted that reference to “full range” includes potential use of “Short Term” levels, but per §64449(d)(3), these levels are acceptable only on a temporary basis pending other actions to establish an acceptable new water source.
49 22 CCR §64449(b).
50 See §13263(b) of the California Water Code.
51 See Basin Plans for the Regional Water Quality Control Boards in Region 3 (Central Coast Water Board); Region 6 (Lahontan Water Board); Region 7 (Colorado River Water Board); Region 8 (Santa Ana Water Board); and Region 9 (San Diego Water Board).
54 See Federal Register 44:42195, July 19, 1979 for establishment of SMCLs; page 42201 for discussion of sulfate.
55 See State Water Board Resolution 68-16. Statement of Policy with Respect to Maintaining High Quality of Waters in California
(Antidegradation Policy).
Section 1.2 above identified four areas where clarification is recommended with regard to implementation of the chemical constituents water quality objectives for surface waters and groundwater:

- **Measuring Compliance with SMCLs** – The Basin Plans should be amended to include language that describes how compliance with SMCLs in Table 64449-A and 64449-B will be determined. Specifically, and except as provided below, compliance would be determined from a filtered sample (water passed through a 0.45 micron filter) for all constituents in Table 64449-B and for the following selected constituents in Table 64449-A: Aluminum, Color, Copper, Iron, Manganese, Silver, Turbidity and Zinc. All of these constituents can be natural elements in the environment or are a characteristic of water influenced by the presence of these elements (i.e., color or turbidity). Compliance with the remaining SMCLs in Table 64449-A and Table 64449-B will be determined from a non-filtered sample using standard methods approved by US EPA or the Division of Drinking Water for raw drinking water supplies.

- **Consideration of Natural Background** - The Basin Plans should be amended to make the language in both Basin Plans consistent and clarify that the language applies to both surface and groundwater. In addition, the Basin Plans should be amended to include language for the Chemical Constituents water quality objective section for cases where the natural background concentration of a particular chemical constituent exceeds the highest level specified in 22 CCR Table 64449-A or “Upper” level specified in Table 64449-B. In such cases, the water body shall not exceed that natural background concentration due to controllable anthropogenic sources. The Basin Plan should include language that states that constituents ranging to the “Short Term” level in Table 64449-B may be authorized on a temporary basis consistent with the provisions of 22 CCR § 64449(d)(3), which may include drought conditions when normal water supplies are not available.

- **“Specific Treatment Requirements” Language for Inland Surface Waters** - Guidelines should be developed in the future to support the Basin Plans to describe how the following existing Basin Plan language would be considered when developing WDRs for discharges to inland surface waters: “The Regional Water Board acknowledges that specific treatment requirements are imposed by state and federal drinking water regulations on the consumption of surface waters under specific circumstances.”

- **Compliance Assessment Time Period** – Language should be added to the implementation section of the Basin Plans to state that an evaluation of compliance with each SMCL in Tables 64449-A and 64449-B shall be at a minimum based on an annual average of collected samples from all analytical results collected from where compliance is determined. This approach is similar to 22 CCR § 64449(c)(1) as it applies to Table 64449-A. 22 CCR § 64449 does not provide a compliance assessment period.
determination approach for Table 64449-B constituents; however, the same compliance assessment approach is recommended for the constituents in both Table 64449-A and 64449-B constituents.

Commented [EC30]: There appears to be new material added to this topic. We intend to review and comment on this later.
3.0 Implementation of SMCLs in Discharge Permits

As noted in the previous section, to implement this SMCL policy, it is recommended that all of the relevant supporting regulatory language at 22 CCR §64449, especially subsections (d) and (e) and §64449.2, be incorporated into the SRSJR and TLB Basin Plans. This outcome will allow the Central Valley Water Board to consider the full range of “Consumer Acceptance Contaminant Levels” described in Table 64449-B when establishing reasonable and appropriate WDRs to protect water bodies designated MUN that may be affected by a proposed discharge. In addition, when developing discharge permit language:

- The Central Valley Water Board shall consider a number of site-specific factors when developing appropriate WDRs consistent with the intent of 22 CCR §64449 and §64449.2, including, but not limited to:
 - The availability of assimilative capacity in the receiving water and compliance with the antidegradation policies;
 - Naturally occurring background concentrations;
 - Background concentrations due to prior anthropogenic activities where it is not feasible or practicable to remediate the effect of these past discharges;
 - The net effect of discharges that are expected to improve receiving water quality;
 - The presence or absence of other minerals (e.g., anion-cation balance) that may mitigate or aggravate aesthetic acceptability – to be considered in consultation with the Division of Drinking Water;
 - The application of appropriate averaging periods, that are consistent with those specified in 22 CCR §64449, to evaluate compliance with WDR monitoring requirements;
 - The potential impact on downstream beneficial uses (surface water and groundwater), including potential to impact water quality at downstream MUN designated surface water bodies or the nearest downstream intakes for a community water system;
 - Evaluation of downstream or down-gradient community water system(s) to determine if a waiver under 22 CCR §64449.2 has been obtained or if the provisions of §64449.4 are being met;
 - Economic factors including the practicality and feasibility of achieving compliance with the SMCLs at the point-of-discharge (including consideration of cost for achieving compliance, the availability of alternative water supplies for drinking water, ability to pay, and cost of non-compliance);
 - The ability of drinking water treatment processes to remove contaminants and the potential effect on drinking water treatment costs for downstream water suppliers and communities;
 - Consideration of other regional salinity management requirements, including the ability to meet existing downstream salinity-related water quality objectives in the SRSJR and TLB Basin Plans and Bay Delta Plan56 and policies, recommendations or regulations resulting from implementation of the CV-SALTS Salinity Management Strategy (see SNMP Attachment A-3);

Commented [EC31]: We plan to review the inclusion of these materials at a later date.

Commented [EC32]: The regulations cited are applicable to drinking water systems to protect public welfare, and were developed for that purpose. The intent of all regulations is to ensure a potable water supply of highest quality and reliability.

Commented [EC33]: As noted in comments provided on 7/22/16, we recommend for removal, since this is a vastly complicated topic, difficult to quantify and only supported for salinity-related compounds. If the language is included, it should be clarified to be applicable to salinity-related compounds, and consultation with DDW should be included.

Commented [EC34]: The MUN water bodies should be protected.

Commented [EC35]: Considering potential impact at the nearest downstream intake may not be protective of all downstream MUN uses.

Commented [EC36]: We will need more time to review this new item.
Potential for the permitted discharge to affect the concentration of constituents identified in 22 CCR Tables 64449-A and 64449-B at downgradient community water systems and to adversely affect the ability of those community water systems to maintain compliance with the SMCLs in the drinking water supplied to their customers.

Need for additional monitoring to track the net effect of permitted discharges at locations upgradient of downgradient well locations where groundwater is extracted for water supply and to determine the need for additional management requirements to protect the supply.

The long-term cumulative impact of all discharges to the same receiving water.

Other concurrent uses and statewide policy goals to encourage water conservation and greater use of recycled water;

Modeling and any reduction in contaminants due to factors such as dilution and soil adsorption; and

Other environmental considerations.

The Central Valley Water Board shall consider the State Water Board’s Recycled Water Policy and the Central Valley SNMP’s goals to increase the use of recycled water, increase stormwater use, and increase water conservation as mechanisms to increase drought protection when determining how to implement the range of TDS or EC values provided in 22 CCR Table 64449-B.

Title 22 CCR §64449(d)(2) states that TDS concentrations up to 1,000 mg/L TDS (or 1600 µS/cm EC) are “acceptable if it is neither reasonable nor feasible to provide more suitable waters”. Accordingly, the Central Valley Water Board should be able to implement the range of TDS or EC values provided in 22 CCR Table 64449-B in the same manner as currently implemented for water supply agencies by referencing the full text and tables of 22 CCR §64449 and §64449.2. However, granting the authority to allow TDS concentrations up to 1,000 mg/L in a discharge (or 1600 µS/cm EC) or higher is not an automatic authorization for such discharges to occur. All of the normal antidegradation requirements (Resolution No. 68-16), as they apply to high quality waters, would continue to apply when developing WDRs and effluent limitations for TDS or EC. If a discharge is likely to lower downstream water quality, it will still be necessary to demonstrate that any such change in high quality water quality:

Will be consistent with maximum benefit to the people of the State;

Will not unreasonably affect present and anticipated beneficial uses of such water; and

Will not result in water quality less than that prescribed by state policies (e.g., water quality objectives established in the Basin Plans).

Where waste discharges have the potential to adversely affect source water quality in water supply intakes/wells located downstream/downgradient MUN designated water bodies, the Central Valley Water Board may require a discharger, or dischargers collectively if in an approved management zone or as part of

57 22 CCR §64449(e) allows for application of “short term” “Consumer Acceptance Contaminant Levels” where specific criteria have been met (see Attachment A to this policy).

58 Note that any authorized upper limit would be based on an averaging period as appropriate and determined by the Central Valley Water Board staff considering site-specific factors.

59 Questions and Answers, State Water Resources Control Board Resolution No. 68-16; February 16, 1995.
The purpose of this analysis is to determine how the permitted discharge to surface water or groundwater affects the concentration of constituents identified in 22 CCR Tables 64449-A and 64449-B in the downstream MUN water bodies to protect source water quality at water supply intakes or water supply wells for current and future MUN users.

- If being allocated assimilative capacity of a high quality water, dischargers individually, or collectively within a management zone, will still be required to meet WDRs resulting in the best practicable treatment or control (BPTC) of the discharge necessary to assure that (a) a condition of pollution or nuisance will not occur; and (b) the highest water quality consistent with maximum benefit to the people of the State will be maintained. To the extent practicable, given the facts known at the time that the WDR is developed, the Central Valley Water Board also should consider the long-term cumulative impact of all discharges to the same receiving water (and any other significant influences and/or trends) before authorizing a discharge that may further lower water quality. In addition, even if TDS or EC in the upper SMCL range is acceptable, it is also desirable to manage water resources toward attaining the recommended SMCL range where feasible, practicable, and reasonable to do so.

- Since the TDS and EC values shown in 22 CCR Table 64449-B are drinking water standards, for groundwater, it is appropriate to track the net effect of permitted discharges at well locations that are downgradient of the discharge but upgradient of where groundwater is extracted for domestic and municipal drinking water use. The potential to impact groundwater extracted for domestic and municipal drinking water use may trigger additional management activities.

4.0 Proposed Modifications to the Basin Plans to Support SNMP Implementation

To implement this SMCL Policy, the Central Valley Water Board should adopt changes to the SRSJR and TLB Basin Plans as summarized in the subsections below.

4.1 Chapter II - Existing and Potential Beneficial Uses

No changes to this section of the SRSJR and TLB Basin Plans are anticipated.

4.2 Chapter III - Water Quality Objectives

Following is a summary of proposed changes to the Water Quality Objective Chapter of each Central Valley Water Board Basin Plan.

Water Quality Control Plan for the Sacramento River and San Joaquin River Basins

To implement this SMCL Policy, the following changes to Chapter III. Water Quality Objectives will be made to the SRSJR Basin Plan:

- Page III-3.00, Chemical Constituents section will be modified as follows (Note: *Additions to the existing text are indicated by underline and deletions of existing text are indicated by strikeout*):

 Chemical Constituents

60 See Groundwater Management Zone Policy (Attachment A-1) for more information regarding management zones.

61 A request for additional information prior to authorizing a permit shall be consistent with CWC §13627.
Waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses...

At a minimum, surface water designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations, which are incorporated by reference into this plan: Tables 64431-A (Inorganic Chemicals) and 64431-B (Fluoride) of Section 64431, and Table 64444-A (Organic Chemicals) of Section 64444, and Tables 64449-A (Secondary Maximum Contaminant levels-Consumer Acceptance Limits) and 64449-B (Secondary Maximum Contaminant Levels-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect.

In addition, for surface waters designated MUN the concentration of chemical constituents shall not exceed the “maximum contaminant level” specified in 22 CCR Table 64449-A or the “Upper” level specified in 22 CCR Table 64449-B, unless otherwise authorized by the Regional Water Board in accordance with the provisions of 22 CCR Section 64449 et seq. Constituent concentrations ranging to the “Upper” level in Table 64449-B are acceptable if it is neither reasonable nor feasible to provide more suitable waters; in addition, constituents ranging to the “Short Term” level in Table 64449-B may be authorized on a temporary basis consistent with the provisions of §64449(d)(3). In cases where the surface water natural background concentration of a particular chemical constituent exceeds the highest level specified in 22 CCR Table 64449-A or “Upper” level specified in Table 64449-B, the surface water shall not exceed that natural background concentration due to controllable anthropogenic sources, unless the Regional Board authorizes it consistent with State Antidegradation Policy”.

• Page III-10.00, Chemical Constituents section will be modified as follows (Note: Additions to the existing text are indicated by underline and deletions of existing text are indicated by strikeout):

Chemical Constituents

Ground waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses.

At a minimum, ground waters designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations, which are incorporated by reference into this plan: Tables 64431-A (Inorganic Chemicals) and 64431-B (Fluoride) of Section 64431, and Table 64444-A (Organic Chemicals) of Section 64444, and Tables 64449-A (Secondary Maximum Contaminant levels-Consumer Acceptance Limits) and 64449-B (Secondary Maximum Contaminant Levels-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect.
In addition, for ground waters designated MUN, concentration of chemical constituents shall not exceed the “maximum contaminant level” specified in 22 CCR Table 64449-A or the “Upper” level specified in 22 CCR Table 64449-B unless otherwise authorized by the Regional Water Board in accordance with the provisions of 22 CCR Section 64449 et seq. Constituent concentrations ranging to the “Upper” level in Table 64449-B are acceptable if it is neither reasonable nor feasible to provide more suitable waters; in addition, constituents ranging to the “Short Term” level in Table 64449-B may be authorized on a temporary basis consistent with the provisions of §64449(d)(3). In cases where the natural background concentration of a particular chemical constituent exceeds the highest level specified in 22 CCR Table 64449-A or “Upper” level specified in Table 64449-B, the ground water shall not exceed that natural background concentration due to controllable anthropogenic sources, unless the Regional Board authorizes it consistent with State Antidegradation Policy.

Water Quality Control Plan for the Tulare Lake Basin

To implement this SMCL Policy, the following changes to Chapter III. Water Quality Objectives will be made to the TLB Basin Plan:

- Page III-3, Chemical Constituents section will be modified as follows (Note: Additions to the existing text are indicated by underline and deletions of existing text are indicated by strikeout):

Chemical Constituents

Waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses...

At a minimum, surface water designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations, which are incorporated by reference into this plan: Tables 64431-A (Inorganic Chemicals) and 64431-B (Fluoride) of Section 64431, and Table 64444-A (Organic Chemicals) of Section 64444, and Tables 64449-A (Secondary Maximum Contaminant Levels-Consumer Acceptance Limits) and 64449-B (Secondary Maximum Contaminant Levels-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect.

In addition, for surface waters designated MUN, concentration of chemical constituents shall not exceed the “maximum contaminant level” specified in 22 CCR Table 64449-A or the “Upper” level specified in 22 CCR Table 64449-B unless otherwise authorized by the Regional Water Board in accordance with the provisions of 22 CCR Section 64449 et seq. Constituent concentrations ranging to the “Upper” level in Table 64449-B are acceptable if it is neither reasonable nor feasible to provide more suitable waters; in addition, constituents ranging to the “Short Term” level in Table 64449-B may be authorized on a temporary basis consistent with the provisions of §64449(d)(3). In cases where the surface water natural background concentration of a particular chemical constituent exceeds the highest level specified in 22 CCR Table 64449-A or “Upper” level specified in Table 64449-B, the surface water shall not exceed that natural background concentration due to...
controllable anthropogenic sources, unless the Regional Board authorizes it consistent with State Antidegradation Policy.

- Page III-7, Chemical Constituents section will be modified as follows (Note: Additions to the existing text are indicated by underline and deletions of existing text are indicated by strikeout):

Chemical Constituents

Ground waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses...

At a minimum, ground waters designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations, which are incorporated by reference into this plan: Tables 64431-A (Inorganic Chemicals) and 64431-B (Fluoride) of Section 64431, and Table 64444-A (Organic Chemicals) of Section 64444, and Tables 64449-A (Secondary Maximum Contaminant levels-Consumer Acceptance Limits) and 64449-B (Secondary Maximum Contaminant Levels-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect.

In addition, for ground waters designated MUN, concentration of chemical constituents shall not exceed the “maximum contaminant level” specified in 22 CCR Table 64449-A or the “Upper” level specified in 22 CCR Table 64449-B unless otherwise authorized by the Regional Water Board in accordance with the provisions of 22 CCR Section 64449 et seq. Constituent concentrations ranging to the “Upper” level in Table 64449-B are acceptable if it is neither reasonable nor feasible to provide more suitable waters; in addition, constituents ranging to the “Short Term” level in Table 64449-B may be authorized on a temporary basis consistent with the provisions of §64449(d)(3). In cases where the natural background concentration of a particular chemical constituent exceeds the highest level specified in 22 CCR Table 64449-A or “Upper” level specified in Table 64449-B, the ground water shall not exceed that natural background concentration due to controllable anthropogenic sources, unless the Regional Board authorizes it consistent with State Antidegradation Policy.

4.3 **Chapter IV - Implementation**

Following is a summary of proposed changes to the Implementation Chapter of each Central Valley Water Board Basin Plan.

Water Quality Control Plan for the Sacramento River and San Joaquin River Basins

To implement this SMCL Policy, the following changes to *Chapter IV. Implementation of the SRSJR Basin Plan* are proposed:

- To support implementation of SMCLs, the following paragraphs are proposed for addition to the SRSJR Basin Plan’s *Chapter IV. Implementation* at a location in the Chapter to be determined.
For the chemical constituents identified in 22 CCR §64449 (Table B) the water quality objectives shall be set as described in Chapter III-3.0 of this water quality control plan. Lower concentrations of these chemical constituents are desirable for promoting greater consumer confidence and acceptance of water supplied by community water systems, and, where it is reasonable and feasible to do so, WDRs should consider the “Recommended” values in 22 CCR §64449 (Table B). These “Recommended” concentrations are not water quality objectives per se but should be considered water resource management goals similar to other public policy goals established by the Regional Water Board and State Water Board to encourage greater water conservation, increased use of recycled water, more stormwater harvesting, additional groundwater recharge and storage, and better drought protection.

To implement the SMCLs in the Chemical Constituents section of the surface water and groundwater quality objectives, the Regional Water Board shall consider, as appropriate, a number of site-specific factors when developing WDRs, including, but not limited to:

- The availability of assimilative capacity in the receiving water and compliance with the antidegradation policies;
- Naturally occurring background concentrations;
- Background concentrations due to prior anthropogenic activities where it is not feasible or practicable to remediate the effect of these past discharges;
- The net effect of discharges that improve receiving water quality;
- The presence or absence of other minerals (e.g., anion-cation balance) that may mitigate or aggravate aesthetic acceptability to be considered in consultation with the Division of Drinking Water;
- The application of appropriate long-term averaging periods to evaluate compliance with WDR monitoring requirements;
- The potential impact on downstream beneficial uses (surface water and groundwater), including potential to impact water quality in water bodies designated as MUN at the nearest downstream intakes for a community water system;
- Evaluation of downstream or down-gradient community water system(s) to determine if a waiver under 22 CCR §64449.2 has been obtained or if the provisions of §64449.4 are being met;
- Economic factors including the practicality and feasibility of achieving compliance with the SMCLs at the point-of-discharge (including consideration of cost for achieving compliance, the availability of alternative water supplies for drinking water, ability to pay, and cost of non-compliance);
- The ability of drinking water treatment processes to remove contaminants and the potential effect on drinking water treatment costs for downstream water suppliers and communities;
- Consideration of other regional salinity management requirements, including the ability to meet existing downstream salinity-related water quality objectives in the SRSJR and TLB Basin.

Commented [EC37]: As noted in comments provided on 7/22/16, we recommend for removal, since this is a very complex issue, difficult to quantify and only supported for salinity-related compounds. If the language is included, it should be clarified to be applicable to salinity-related compounds, and consultation with DDW should be included.

Commented [EC38]: As noted above, there are two significant issues here. The MUN water body should be protected to support current and future MUN use, and considering the first downstream water intake may not fully protect all downstream water systems.

Commented [EC39]: We will need to review this new added item at a future date.

Commented [EC40]: As noted in 7/22/16 comments, important to clarify that effluent limits may include dilution factors, etc.
Plans and Bay Delta Plan62 and policies, recommendations or regulations resulting from implementation of the CV-SALTS Salinity Management Strategy (see SNMP Attachment A-3);

- Potential for the permitted discharge to affect the concentration of constituents identified in 22 CCR Tables 64449-A and 64449-B in the downstream MUN water body at downgradient community water systems to ensure a safe drinking water supply for current and future MUN users.
- Need for additional monitoring to track the net effect of permitted discharges at locations upgradient of downgradient well locations where groundwater is extracted for water supply and to determine the need for additional management requirements to protect the supply.
- The State Water Board’s Recycled Water Policy and the Central Valley SNMP’s goals to increase the use of recycled water, increase stormwater use, and increase water conservation as mechanisms to increase drought protection.
- The long-term cumulative impact of all discharges to the same receiving water.
- Other concurrent uses and statewide policy goals to encourage water conservation and greater use of recycled water.
- Modeling and any reduction in contaminants due to factors such as dilution and soil adsorption; and
- Other environmental considerations.

Compliance with any chemical constituent in Tables 64449-A of 64449-B shall be determined from the annual average of analytical sample results from non-filtered samples using standard methods approved by USEPA or the Division of Drinking Water for raw drinking water supplies, based on the techniques in (a) and (b) below.

(a) Compliance with the chemical constituent water quality objective shall be determined from a filtered water sample (0.45 micron filter) for the following constituents identified in 22 CCR §64449 (Table A): Aluminum, Color, Copper, Iron, Manganese, Silver, Turbidity and Zinc.

(b) Compliance with the chemical constituent water quality objective shall be determined from an unfiltered water sample for the following constituents identified in 22 CCR §64449 (Table A): Foaming Agents (MBAs), Methyl-tert-Butyl Ether (MTBE), Odor-Threshold and Thiobencarb.

(c) For receiving waters that have been deemed exempt from surface water filtration, compliance with chemical constituent water quality objectives for all parameters identified in 64449-Tables A and B shall be determined using an unfiltered water sample.63

Water Quality Control Plan for the Tulare Lake Basin

To implement this SMCL Policy, the following change to *Chapter IV. Implementation Plan* will be made to the TLB Basin Plan:

To support implementation of SMCLs, the following text will be added to the TLB Basin Plan’s Chapter IV. Implementation Plan at a location to be determined, but potentially in association with “Policy for Application of Water Quality Objectives (Pg. IV-21 ff.) (Note: Additions to the existing text are indicated by underline and deletions of existing text are indicated by strikeout):

For the chemical constituents identified in 22 CCR §64449 (Table B) the water quality objectives shall be set as described in Chapter III-10.0 of this water quality control plan. Lower concentrations of these chemical constituents are desirable for promoting greater consumer confidence and acceptance of water supplied by community water systems, and, where it is reasonable and feasible to do so, WDRs should consider the “Recommended” values in 22 CCR §64449 (Table B). These “Recommended” concentrations are not water quality objectives per se but, rather, should be considered water resource management goals similar to other public policy goals established by the Regional Water Board and State Water Board to encourage greater water conservation, increased use of recycled water, more stormwater harvesting, additional groundwater recharge and storage, and better drought protection, etc.

To implement the SMCLs in the Chemical Constituents section of the surface water and groundwater quality objectives, the Regional Water Board shall consider, as appropriate, a number of site-specific factors when developing WDRs, including, but not limited to:

- The availability of assimilative capacity in the receiving water and compliance with the antidegradation policies;
- Naturally occurring background concentrations;
- Background concentrations due to prior anthropogenic activities where it is not feasible or practicable to remediate the effect of these past discharges;
- The net effect of discharges that improve receiving water quality;
- The presence or absence of other minerals (e.g., anion-cation balance) that may mitigate or aggravate aesthetic acceptability;
- The application of appropriate long-term averaging periods to evaluate compliance with WDR monitoring requirements;
- The potential impact on downstream beneficial uses (surface water and groundwater), including potential to impact water quality at the nearest downstream intakes for a community water system;
- Evaluation of downstream or down-gradient community water system(s) to determine if a waiver under 22 CCR §64449.2 has been obtained or if the provisions of §64449.4 are being met;
- Economic factors including the practicality and feasibility of achieving compliance with the SMCLs at the point-of-discharge (including consideration of cost for achieving compliance, the availability of alternative water supplies for drinking water, ability to pay, and cost of non-compliance);
- The ability of drinking water treatment processes to remove contaminants and the potential effect on drinking water treatment costs for downstream water suppliers;
Consideration of other regional salinity management requirements, including the ability to meet existing downstream salinity-related water quality objectives in the SRSJR and TLB Basin Plans and Bay Delta Plan and policies, recommendations or regulations resulting from implementation of the CV-SALTS Salinity Management Strategy (see SNMP Attachment A-3);

Potential for the permitted discharge to affect the concentration of constituents identified in 22 CCR Tables 64449-A and 64449-B at downgradient community water systems to ensure a safe drinking water supply for users.

Need for additional monitoring to track the net effect of permitted discharges at locations upgradient of downgradient well locations where groundwater is extracted for water supply and to determine the need for additional management requirements to protect the supply.

The State Water Board’s Recycled Water Policy and the Central Valley SNMP’s goals to increase the use of recycled water, increase stormwater use, and increase water conservation as mechanisms to increase drought protection.

The long-term cumulative impact of all discharges to the same receiving water.

Other concurrent uses and statewide policy goals to encourage water conservation and greater use of recycled water;

Modeling and any reduction in contaminants due to factors such as dilution and soil adsorption; and

Other environmental considerations.

Compliance with any chemical constituent in Tables 64449-A of 64449-B shall be determined from the annual average of sample results based on the techniques in (a) and (b) below.

(a) Compliance with the chemical constituent water quality objective shall be determined from a filtered water sample (0.45 micron filter) for the following constituents identified in 22 CCR §64449 (Table A): Aluminum, Color, Copper, Iron, Manganese, Silver, Turbidity and Zinc.

(b) Compliance with the chemical constituent water quality objective shall be determined from an unfiltered water sample for the following constituents identified in 22 CCR §64449 (Table A): Foaming Agents (MBAs), Methyl-tert-Butyl Ether (MTBE), Odor-Threshold and Thiobencarb.

(c) For receiving waters that have been deemed exempt from surface water filtration requirements, compliance with chemical constituent water quality objectives for all parameters identified in §64449-Tables A and B shall be determined using an unfiltered water sample.

Supporting Information on Guidance to Implement Secondary Maximum Contaminant Levels
Attachment A

Title 22. Social Security
Division 4. Environmental Health
Chapter 15. Domestic Water Quality and Monitoring Regulations

Article 16. Secondary Drinking Water Standards

§64449. Secondary Maximum Contaminant Levels and Compliance.

(a) The secondary MCLs shown in Tables 64449-A and 64449-B shall not be exceeded in the water supplied to the public by community water systems.

Table 64449-A
Secondary Maximum Contaminant Levels
“Consumer Acceptance Contaminant Levels”

<table>
<thead>
<tr>
<th>Constituents, Units</th>
<th>Maximum Contaminant Levels/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.2 mg/L</td>
</tr>
<tr>
<td>Color</td>
<td>15 Units</td>
</tr>
<tr>
<td>Copper</td>
<td>1.0 mg/L</td>
</tr>
<tr>
<td>Foaming Agents (MBAS)</td>
<td>0.5 mg/L</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 mg/L</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Methyl-tert-butyl ether (MTBE)</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Odor – Threshold</td>
<td>3 Units</td>
</tr>
<tr>
<td>Silver</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Thiobencarb</td>
<td>0.001 mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 Units</td>
</tr>
<tr>
<td>Zinc</td>
<td>5.0 mg/L</td>
</tr>
</tbody>
</table>

Table 64449-B
Secondary Maximum Contaminant Levels
“Consumer Acceptance Contaminant Level Ranges”

<table>
<thead>
<tr>
<th>Constituents, Units</th>
<th>Recommended</th>
<th>Upper</th>
<th>Short Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids, mg/L or Specific Conductance, µS/cm</td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>250</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Sulfate, mg/L</td>
<td>250</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>
(b) Each community water system shall monitor its groundwater sources or distribution system entry points representative of the effluent of source treatment every three years and its approved surface water sources or distribution system entry points representative of the effluent of source treatment annually for the following:

(1) Secondary MCLs listed in Tables 64449-A and 64449-B; and

(2) Bicarbonate, carbonate, and hydroxide alkalinity, calcium, magnesium, sodium, pH, and total hardness.

(c) If the level of any constituent in Table 64449-A exceeds an MCL, the community water system shall proceed as follows:

(1) If monitoring quarterly, determine compliance by a running annual average of four quarterly samples;

(2) If monitoring less than quarterly, initiate quarterly monitoring and determine compliance on the basis of an average of the initial sample and the next three consecutive quarterly samples collected;

(3) If a violation has occurred (average of four consecutive quarterly samples exceeds an MCL), inform the State Board when reporting pursuant to Section 64469;

(4) After one year of quarterly monitoring during which all the results are below the MCL and the results do not indicate any trend toward exceeding the MCL, the system may request the State Board to allow a reduced monitoring frequency.

(d) For the constituents shown on Table 64449-B, no fixed consumer acceptance contaminant level has been established.

(1) Constituent concentrations lower than the Recommended contaminant level are desirable for a higher degree of consumer acceptance.

(2) Constituent concentrations ranging to the Upper contaminant level are acceptable if it is neither reasonable nor feasible to provide more suitable waters.

(3) Constituent concentrations ranging to the Short Term contaminant level are acceptable only for existing community water systems on a temporary basis pending construction of treatment facilities or development of acceptable new water sources.

(e) New services from community water systems serving water which carries constituent concentrations between the Upper and Short Term contaminant levels shall be approved only:

(1) If adequate progress is being demonstrated toward providing water of improved mineral quality.

(2) For other compelling reasons approved by the State Board.

(f) A community water system may apply to the State Board for a waiver from the monitoring frequencies specified in subsection (b), if the system has conducted at least three rounds of monitoring (three periods for groundwater sources or three years for approved surface water sources).
and these analytical results are less than the MCLs. The water system shall specify the basis for its request. A system with a waiver shall collect a minimum of one sample per source while the waiver is in effect and the term of the waiver shall not exceed one compliance cycle (i.e., nine years).

(g) Nontransient-noncommunity and transient-noncommunity water systems shall monitor their sources or distribution system entry points representative of the effluent of source treatment for bicarbonate, carbonate, and hydroxide alkalinity, calcium, iron, magnesium, manganese, pH, specific conductance, sodium, and total hardness at least once. In addition, nontransient-noncommunity water systems shall monitor for the constituents in Tables 64449-A and B at least once.

§64449.2. Waivers for Secondary MCL Compliance.

(a) If the average of four consecutive quarters of sample results for a constituent that does not have a primary MCL is not greater than three times the secondary MCL or greater than the State Notification Level, an existing community water system is eligible to apply for a nine-year waiver of a secondary MCL in Table 64449-A, for the following:

(1) An existing source; or

(2) A new source that is being added to the existing water system, as long as:

 (A) The source is not being added to expand system capacity for further development; and

 (B) The concentration of the constituent of concern in the new source would not cause the average value of the constituent’s concentration at any point in the water delivered by the system to increase by more than 20%.

(b) To apply for a waiver of a secondary MCL, the community water system shall conduct and submit a study to the State Board within one year of violating the MCL that includes the following:

(1) The water system complaint log, maintained pursuant to section 64470(a), along with any other evidence of customer dissatisfaction, such as a log of calls to the county health department;

(2) An engineering report, prepared by an engineer registered in California with experience in drinking water treatment, that evaluates all reasonable alternatives and costs for bringing the water system into MCL compliance and includes a recommendation for the most cost-effective and feasible approach;

(3) The results of a customer survey distributed to all the water system’s billed customers that has first been approved by the State Board based on whether it includes:

 (A) Estimated costs to individual customers of the most cost-effective alternatives presented in the engineering report that are acceptable to the State Board based on its review of their effectiveness and feasibility;

 (B) The query: “Are you willing to pay for (identify constituent) reduction treatment?”;

 (C) The query: “Do you prefer to avoid the cost of treatment and live with the current water quality situation?”
(D) The statement: “If you do not respond to this survey, (insert system name) will assume that you are in support of the reduction treatment recommended by the engineering report.”

(4) A brief report (agenda, list of attendees, and transcript) of a public