GIS Task 5: Develop Crop Sensitivity Tools

LWA Team Members:

John Dickey/PlanTierra Sevim Onsoy/KJ Krishna Raichura/KJ

June 20, 2013

GIS Task 5 Workplan (thru 5.2)

- 5.1: Research And Develop Map Layers
 - Political or Other Boundaries and Base Map Information, and Preliminary Policy Recommendations
 - General (Statsgo2) and Order 2 (SSURGO) Soil Mapping
 - Irrigation Supply Water Sources and Quality
 - Agriculture Beneficial Use Listings
 - Current Crops Grown
 - Current and Historic Value of the Crops Grown
 - Other Constraints Limiting Growth of Crops
- 5.2: Identify Crop Sensitivity Zones
 - Define CSZs Based on...(cropping, source and water quality of irrigation water, drainage basin delineations, soils, climate conditions)
 - Summaries and Presentation of CSZ Properties

Crop Sensitivity Zones, Main Points

- Issues & approaches to regulating discharges into Agdominated waterways: Live Oak
- Map of sensitive crops locations in the Central Valley
- Why location in the watershed matters
- Water quality (salinity) thresholds (possible range of values)
- Process for determining Crop Sensitivity Zones
- CSZs & characteristics
- Applied water salinity: the status quo

Issues & Approaches: Live Oak

"...there is no permitted or planned agricultural use of City effluent in Reclamation District 777 Lateral Drain No. 1 or Lateral Drain No.2.

... If the effluent were used locally, without dilution, by agriculture

...plums (prunes) are the most salt sensitive major crop

...no reduction in yield for EC of soil extract (ECe) of 1,500 μ mhos/cm. With an irrigation water EC of 1,100 μ mhos/cm (the final effluent limitation) and a leaching requirement of only 10 percent (which represents a highly efficient irrigation method), the resulting ECe is estimated to range from 1,294 μ mhos/cm (exponential model) to 1,403 μ mhos/cm (arithmetic model

...the final effluent limitation of 1,100 µmhos/cm poses no material risk to area agriculture even if a farmer replaced his current water supply with undiluted effluent from the Reclamation District 777 drainage ditches."

Distribution of Major, Sensitive Crops

ALIMPING DE

511

It matters where sensitive crops are located relative to recharge areas

Schematic example: Surface water recharge areas with co-mingled surface drainage

> Area with sensitive crops

> > Channel network (assuming return flows to same network

It matters where sensitive crops are located relative to recharge areas

Isolated surface drainage Schematic example: network Surface water recharge areas with isolated surface drainage

It matters where sensitive crops are located relative to recharge areas

Initial Crop Sensitivity Zones

Crops for which coefficients have not been measured

Sensitive	Moderately Sensitive	Moderately Tolerant	Tolerant
Okra	Brussels sprouts	Fig	Jojoba
Parsnip	Cauliflower	Jujube	Kenaf
Apple	Kale	Рарауа	Millet, channel
Avocado	Kohlrabi	Pineapple	Oat
Cherimoya	Pumpkin	Pistacio****	Alkali grass, nuttall
Cherry, sweet	Watermelon	Pomegranate	Alkali sacaton
Cherry, sand	Castorbean	Safflower	Kallar grass
Currant	Bentgrass	Brome, mountain	Kikuyagrass**
Gooseberry	Bluestem, Angleton	Canary grass, reed	Oat (forage)
Lime	Brome, smooth	Clover, Hubam	Paspalum, Polo**
Loquat	Buffelgrass	Clover, sweet	Salt grass, desert
Mango	Burnet	Dhaincha	Wild rye, Altai
Passion fruit	Clover, white Dutch	Fescue, meadow	Wild rye, Russian
Pear	Dallis grass	Guinea grass	
Persimmon	Glycine	Panicgrass, blue	
Pummelo	Grama, blue	Paspalum, PJ299042**	
Raspberry	Milkvetch, cicer	Rape	
Rose apple	Millet, Foxtail	Rescue grass	
Sapote, white	Oatgrass, tall	Rhodes grass	
Tangerine	Sirato	Ryegrass, Italian	
Sesame	Eucalyptus	Trefoil, broadleaf bird's foot	
Walnut	Timothy	Wheat grass, intermediate	
Nursery		Wheat grass, slender	
		Wheat grass, western	
		Wild rye, Canadian	1
		Kiwi	

Crop Patterns based on DWR Land Use Survey

Distribution of Major, Sensitive Crops

Average Effective Precipitation

Available Water Supply at 0-25 Soil Depth (cm) based on the NRCS-SSURGO

Available Water Supply at 0-100 Soil Depth (cm) based on the NRCS-SSURGO

Soils Data for Electrical Conductivity (dS/cm) based on the NRCS-SSURGO

Drainage Classes based on the NRCS-SSURGO

Sodium Adsorption Ratio based on the NRCS-SSURGO

Applied water salinity: the status quo

Initial Crop Sensitivity Zones

Summary

- Hydrography a helpful CSZ delineation starting point from the standpoint of AGR implementation
- Sensitive crop areas often localized; irrigation water sources can be determined
- Crop sensitivity target concentrations crop/soil/climate driven; exact method TBD
- To protect sensitive crops, AGR needed in recharge zones for irrigation source waters
- Recharge areas likely portions of initial CSZs, but hydrographically driven